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Abstract

Machine learning has always been an' integral part of artificial intelligence, and its methodology has
evolved in concert with the major concerns of the field. In response to the difficulties of encoding
ever-increasing volumes of knowledge in modern Al systems. many researchers have recently turned
their attention to machine learning as a means to overcome the knowledge acquisition bottleneck.
Part I of this paper presents a taxonomic analysis of machine learning organized primarily by learning
strategies and secondarily by knowledge representation and application areas. A historical survey
outlining the development of various approaches to machine, learning is presented from early neural
networks to present knowledge-intensive techniques. Part II (to be published in a subsequent issue)
will outline major present research directions, and suggest viable areas for future investigatio n

1This paoer is a modified and extended version of the first chalpter of Machine Learning! An Artificial Intelligence Approacht
(Michalski ef al.. 19831, with permision of the publisher: Tioga Press (Palo Alto. CA). The research described here was
soonsored in part by the Office of Naval Research (ONR) under qrant nunber N00014-79.C-0661, and in part by the National
Science Foundation giant MCS82-05166.
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A Historical and Methodological Analysis

1. Introduction
Learning is a many-faceted phenomenon. Learning processes include the acquisition of new

dec-arative knowledge, the development of motor and cognitive skills through instruction or practice,

the organization of new knowledge into general. offective representations. and the discovery of new

facts and theories through observation and experimentation. The study and computer modelling of

learning processes in their multiple manifestations constitutes the subject matter of machine learning.

Although machine learning has been a central concern in artificial intelligence since the early days

when the idea of "self-organizing systems" was popular, the limitations inherent in the early neural

network approaches led to a temporary decline in research volume. More recently, new symbolic

methods and knowledge.intensive techniques have yielded promising results and these in turn have

led to the current revival in machine learning research. This paper examines some basic

methodological issues, proposes a classification of machine learning techniques, and provides a

historical review of the major research directions.

2. The Objectives of Machine Learning
The field of machine learning can be organized around three primary research loci:

* Task-Oriented Studies-the development and analysis of learning systems oriented
toward solving a predetermined set of tasks (also known as the "engineering approach")

* Cognitive Simulation-the investigation and computer simulation of human learning
processes (also known as the "cognitive modelling approach")

* Theoretical Analysis-the theoretical exploration of the space of possible learning
methods and algorithms independent of application domain.

Although many research efforts strive primarily towards one of these objectives, progress in one

objective often leads to progress in another. For instance., in order to investigate the space of

possible learning methods, a reasonable starting point may be to consider the only known example of

robust learning behavior, namely humans (and perhaps other biological systems). Similarly,

psychological investigations of human learning may be helped by theoretical analysis that may

suggest various plausible learning models. The need to acquire a particular form of knowledge in

some task.oriented study may itself spawn new theoretical analysis or pose the question: "How do

humans acquire this specific skill (or knowledge)?" The existence of these mutually supportive

objectives reflects the entire field of artificial intelligence, where expert systems research, cognitive

simulation, and theoretical studies provide some cross-fertilization of problems and ideas.



The Cblectives of Machine Learning

2.1. Applied Learning Systems: A Practical Necessity

At present. instructing a computer or a computer-controlled robot to perform a task requires one to

define a complete and correct algorithm for that task, and then laboriously program the algorithm into

a computer. These activities typically involve a tedious and time-consuming effort by specially trained

personnel.

Present-day computer systems cannot truly learn to perform a task through examples or by analogy

to a similar, previously-solved task. Nor can they improve significantly on the basis of past mistakes,

or acquire new abilities by observing and imitating experts. Machine learning research strives to

open the possibility of instructing computers in such new ways. and thereby promises to ease the

burden of hand-programming growing volumes of increasingly complex information into the

computers of tomorrow. The rapid expansion of applications and availability of computers today

makes this possibility even more attractive and desirable.

When approaching a task-oriented knowledge acquisition task, one must be aware that the

resultant computer systems must interact with humans, and therefore should closely parallel human

abilities. The traditional argument that an engineering approach need not reflect human or biological

performance is not truly applicable to machine learning. Since airplanes, a successful result of an

almost pure engineering approach, bear little resemblance to their biological counterparts, one may

argue that applied knowledge acquisition systems could be equally divorced from any consideration

of human capabilities. This argument does not apply here because airplanes need not interact with or

understand birds, Learning machines, on the other hand, will have to interact with the people who

make use of them, and consequently the concepts and skills they acquire-if not necessarily their

internal mechanisms-must be understandable to humans.

2.2. Machine Learning as a Science

The question of what are the genetically-endowed abilities in a biological system (versus

environmentally-acquired skills or knowledge) has fascinated biologists. psychologists, philosophers

and artificial intelligence researchers alike. A clear candidate for a cognitive invariant in humans is

the learning mechanism-the innate ability to acquire facts, skills and more abstract concepts.

Therefore. understanding human learning well enough to reproduce aspects of that learning behavior

in a computer system is, in itself, a worthy scientific goal. Moreover, the computer can render

substantial assistance to cognitive psychology, in that it may be used to test the consistency and

completeness of learning theories, and enforce a commitment to fine-structure process-level detail

that precludes meaningless. tautological or untestable theories Sloman, 1978; Carbonell, 1981].
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The study of human learning processes is also of considerable practical significance. Gaining

insights into the principles underlying human learning abilities is likely to lead to more effective

educational techniques. Thus, it is not surprising that research into intelligent computer.assisted

instruction, which attempts to develop computer-based tutoring systems, shares many of the goals

and perspectives with machine learning research. One particularly interesting development is that

computer tutoring systems are starting to incorporate abilities to infer models of student competence

from observed performance. Inferring the scope of a student's knowledge and skills in a particular

area allows much more effective and individualized tutoring of the student [Sleeman, 1983].

An equally basic scientific objective of machine learning is the exploration of possible learning

mechanisms, including the discovery of different induction algorithms, the scope and theoretical

limitations of certain methods, the information that must be available to the learner, the issue of

coping with imperfect training data, and the creation of general techniques applicable in many task

domains. There is no reason to believe that human learning methods are the only possible means of

acquiring knowledge and skills. In fact, common sense suggests that human learning represents just

one point in an uncharted space of possible learning methods-a point that through the evolutionary

process is particularly well suited to cope with the general physical environment in which we exist.

Most theoretical work in machine learning has centered on the creation, characterization and analysis

of general learning methods, with the major emphasis on analyzing generality and performance rather

than psychological plausibility.

Whereas theoretical analysis provides a means of exploring the space of possible learning methods,

the task-oriented approach provides a vehicle to test and improve the performance of functional

learning systems. By constructing and testing applied learning systems, one can determine the

cost.effectiveness trade-offs and limitations of particular approaches to learning. In this way,

individual data points in the space of possible learning systems are explored, and the space itself

becomes better understood.

2.3. Knowledge Acquisition versus Skill Refinement

There are two basic forms of learning: knowledge acquisition and skill refinement. When we say

that someone learned physics, we mean that this person acquired concepts of physics, understood

their meaning, and their relationship to each other as well as to the physical world. The essence of

learning in this case is the acquisition of knowledge, including descriptions and models of physical

systems and their behaviors, incorporating a variety of representations-from simple intuitive mental

models, examples and images, to completely tested mathematical equations and physical laws. A

person is said to have learned more if his knowledge explains a broader scope of situations, is more
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accurate. and is better able to predict the behavior of the physical world [Popper, 19681. This form cf

learning is typical to a large variety of situations and is generally termed knowledge acquisition.

Hence. knowledge acquisition is defined as learning new symbolic information coupled with the

ability to apply that information in an effective manner.

A second kind of learning is the gradual improvement of motor and cognitive skills through practice,

such as learning to ride a bicycle or to play the piano. Acquiring textbook knowledge on how to

perform these activities represents only the mitial. and not necessarily critical, phase in developing

the requisite skills. The bulk of the learning process consists of refining the acquired skill, and

improving the mental or motor coordination by repeated practice and a correction of deviations from

desired behavior. This form of learning, often called skill refinement, differs in many ways from

nowledge acquisition. Whereas the essence of knowledge acquisition may be a conscious process

whose result is the creation of new symbolic knowledge structures and mental models, skill

refinement occurs by virtue of repeated practice without concerted conscious effort. Most human

learning appears to be a mixture of both activities, with intellectual endeavors favoring the former,

and motor coordination tasks favoring the latter.

Present machine learning research focuses on the knowledge acquisition aspect, although some

investigations, specifically those concerned with learning in problem-solving and transforming

declarative instructions into effective actions, touch on aspects of both types of learning. Whereas

knowledge acquisition clearly belongs in the realm of artificial intelligence research. a case could be

made that skill refinement comes closer to non-symbolic processes, such as those studied in adaptive

control systems. It may indeed be the case that skill acquisition is inherently non.symbolic in

biological systems. but an interesting symbolic model capable of simulating gradual skill improvement

through practice has been proposed by Newell and Rosenbloom (Newell. 1981]. Hence. perhaps both

forms of learning can be captured in artificial intelligence models.

3. A Taxonomy of Machine Learning Research
This section presents a taxonomic road map to the field of machine learning with a view towards

presenting useful criteria for classifying and comparing most artificial intelligence-based machine

learning investigations. Later, the main directions ac.tually taken by researchers in this area over the

past twenty years are surveyed.

One may classify machine learning systems along many different dimensions. We have chosen

three dimensions as particularly meaningful:
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" Classification on the basis of the underlying learning strategy used. The strategies are
ordered by the amount of inference the learning system performs on the information
provided to the system.

" Classification on the basis of the type of representation of knowledge (or skill) acquired
by the learner.

*Classification in terms of the application domain of the performance system for which
knowledge is acquired.

Each point in the space defined by the above dimensions corresponds to a system employing a

particular learning strategy, a particular knowledge representation, and applied to a particular

domain. Since many existing learning systems employ multiple strategies and knowledge

representations, and some have been applied to more than one domain, such learning systems are

characterized by a collection of points in the space.

The subsections below describe explored values along each of these dimensions. Future research

may well reveal new values on these dimensions as well as new dimensions. Indeed, the larger space

of all possible learning systems is still only sparsely explored and partially understood. Existing

learning systems correspond to only a small portion Of the space because they represent only a small

number of possible combinations of the values.

3. t. Classification Based on the Underlying Learning Strategy

Since we distinguish learning strategies by the amount of inference the learner performs on the

information provided, we first consider the two extremes: performing no inference, and performing a

substantial amount of inference. If a computer system is programmed directly, its knowledge

increases, but it performs no inference whatsoever on the new information: all cognitive effort is on

the part of the programmer. Conversely, if a system independently discovers new theories or invents

new concepts, it must perform a very substantial amount of inference; it is deriving organized

knowledge from experiments and observations. An intermediate point in the spectrum would be a

student determining how to solve a mathematics problem by analogy to worked-out examples in the

textbook-a process that requires inference, but much less than discovering a new branch of

mathematics without guidance from teacher or textbook.

As the amount of inference that the learner is capable of performing increases, the burden placed

on the teacher or external environment decreases. It is much more difficult to teach a person by

explaining each step in a complex task than by showing that person the way that similar tasks are

usually handled. It is more difficult yet to program a computer to perform a complex task than to
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instruct a person to perform the task: as programming requires explic:t specification of all requisite

detail, whereas a person receiving instruction can use prior knowledge and common sense to fill in

most mundane details. The taxonomy below captures this notion of trade-offs in the amount of effort

required of the learner and of the teacher.

3.1.1. Rote Learning and Direct Implanting of New Knowledge

In rote learning no inference or other transformation of the knowledge is performed by the learner.

Variants of this strategy of knowledge' acquisition method include:

* Learning by being programmed, constructed or modified by an external entity. (for
example, the usual style of computer programming).

* Learning by memorization of given facts and data with no inferences drawn from the
incoming information (for example, as performed by existing database systems). The
term "rote learning" is used primarily in this context.

3.1.2. Learningfrom Instruction

Acquiring knowledge from a teacher or other organized source. such as a textbook. requires that

the learner transform the knowledge from the input language to an internally-usable representation.

and that the new information be integrated with prior knowledge for effective use. Hence, the learner

is required to perform some inference, but a large fraction of the burden remains with the teacher,

who must present and organize knowledge in a way that incrementally augments the student's

existing knowledge. Learning from instruction, also termed "learning by being told", parallels most

formal education methods. Therefore, the machine learning task is one of building a system that can

accept instruction or advice and can store and apply this learned knowledge effectively.

3.1.3. Learning by Analogy

Learning by analogy is the process of transforming and augmenting existing knowledge (or skills)

applicable in one domain to perform a similar task in a related domain. For instance, a person who

has never driven a small truck. but drives automobiles. may well transform his existing skill (perhaps

imperfectly) to the new task. Similarly. a learning-by-analogy system might be applied to convert an

existing computer program into one that performs a closely-related function for which it was not

originally designed. Learning by analogy requires more inference on the part of the learner than does

rote learning or learning from instruction. A fact or skill analogous in relevant parameters must be

retrieved from memory; then the retrieved knowledge must be appropriately transformed, applied to

the new situation. and stored for future use.
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3.1.4. Learning from examples

Learning from examples is a special case of inductive learning. Given a set of examples and

counterexamples of a concept, the learner induces a general concept description that describes all of

the positive examples and none of the counterexamples. Learning from examples is a method that

has been heavily investigated in artificial intelligence. The amount of inference performed by the

learner is much greater than in learning from instruction, as no general concepts are provided by a

teacher, and is somewhat greater than in learning by analogy, as no similar concepts are provided as

"seeds" from which the new concept may be grown. Learning from examples can be subcategorized

according to the source of the examples:

" The source is a teacher who knows the concept and generates examples of the concept
that are meant to be as helpful as possible. If the teacher also knows (or, more typically,
infers) the knowledge state of the learner, the examples can be generated to optimize
convergence on the desired concept (as in Winston's near.miss analysis [Winston,
1975]).

" The source is the learner itself. The learner typically knows its own knowledge state, but
clearly does not know the concept to be acquired. Therefore, the learner can generate
instances (and have an external entity such as the environment or a teacher classify them
as positive or negative examples) on the basis of the information it believes necessary to
discriminate among contending concept descriptions. For instance, a learner trying to
acquire the concept of "ferromagnetic substance", may generate as a possible candidate
"all metals". Upon testing copper and other metals with a magnet, the learner will then
discover that copper is a counterexample, and therefore the concept of ferromagnetic
substance should not be generalized to include all metals. (Mitchell's LEX system (1983]
and Carbonell's plan generalization method [1983] illustrate the process of internal
instance generation.)

" The source is the external environment. In this case the example generation process is
operationally random, as the learner must rely on relatively uncontrolled observations.
For example, an astronomer attempting to infer precursors to supernovas must rely
mainly upon unstructured data presentation. Although the astronomer knows the
concept of a supernova, he cannot know a priori where and when a supernova will occur,
nor can he cause one to exist. (Michalski's STAR methodology [1983] exemplifies this
type of learning).

One can also classify learning from examples by the type of examples available to the learner:

e Only positive examples available. Whereas positive examples provide instances of the
concept to be acquired, they do not provide information for preventing overgeneralization
of the inferred concept. In this kind of learning situation, overgeneralization might be
avoided by considering only the minimal generalizations necessary, or by relying upon a
priori domain knowledge to constrain the concept to be inferred.

o Positive and negative examples available. In this kind of situation, positive examples force
generalization whereas negative examples prevent overgeneralization (the induced
concept should never be so general as to include any of the negative examples). This is
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.he most tYpical form of earning from examples.

Learning from examples may be one-trial or incremental. In the former case, all examples are

presented at once, In the latter case. the system must form one or m "e hypotheses of the concept (or

range of concepts) consistent with the available data, and subsequently refine the hypotheses after

considering additional examples. The incremental approach more closely parallels human learning,

allows the learner to use partially earned concepts (for performance. or to guide the example

generation process). and enables a teacher to focus on the basic aspects of a new concept before

attempting to impart less central details. On the other hand, the one-step approach is less apt to lead

one down garden paths by an inludicicus choice of initial examples in formulating the kernel of the

new concept.

3.1.5. Learning from Observation and Discovery

This "unsupervised learning" approach is a very general form of inductive learning that includes

discovery systems. theory.formation tasks, the creation of classification criteria to form taxonomic

hierarchies, and similar tasks to be performed without benefit of an external teacher. Unsupervised

iearning requires the learner to perform more inference than any approach thus far discussed. The

learner is not provided with a set of instances of a particular concept, nor is it given access to an

oracle that can classify internally-generated instances as positive or negative examples of any given

concept. Moreover. rather than focusing on a single concept at a time, the observations may span

several concepts that need to be acquired. thus introducing a severe focus-of -attention problem.

One may subclassify learning from observation according to the degree of interaction with an external

environment. The extreme points in this dimension are:

" Passive observation, where the learner classifies and taxonomizes observations of
multiple aspects of the environment (as in Michalski and Stepp's conceptual clusteprng
[19831.)

* Active experimentation, where the learner perturbs the environment to observe the
results of its perturbations. Experimentation may be random, dynamically focused
according to general criteria of interestingness. or strongly guided by theoretical
constraints. As a system acquires knowledge. and hypothesizes theories it may be driven
to confirm or disconfirm its theories, and ience explore its environment applying different
observation and experimentation strategies as the need arises. Often this form of
learning involves the generation of examples to test hypothesized or partially acquired
concepts. (This type of learning is exemplified in Lenat's AM and EURISKO systems
[Lenat, 1976; Lenat, 19831.)

An Intermediate point in this dimension is the BACON system [Langley, et al. 19831, which selectively

focuses attention but does not design new experiments.
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The above classification of learning strategies should help one to compare various learning systems

in terms of their underlying mechanisms, in terms of the available external source of information, and

in terms of the degree to which they rely on pre-organized knowledge.

3.2. Classification According to the Type of Knowledge Acquired

A learning system may acquire rules of behavior, descriptions of physical objects, problem.solving

heuristics, classification taxonomies over a sample space, and many other types of knowledge useful

in the performance of a wide variety of tasks. The list below spans types of knowledge acquired,

primarily as a function of the representation of that knowledge.

1. Parameters in algebraic expressions-Learning in this context consists of adjusting
numerical parameters or coefficients in algebraic expressions of a fixed functional form
so as to obtain desired performance. For instance, perceptrons [Rosenblatt. 1958:
Minsky & Papert, 1969] adjust weighting coefficients for threshold logic elements when
learning to recognize two-dimensional patterns.

2. Decision trees-Some systems acquire decision trees to discriminate among classes of
objects. The nodes in a decision tree correspond to selected object attributes, and the
edges correspond to predetermined alternative values for these attributes. Leaves of the
tree correspond to sets of objects with an identical classification. Feigenbaum's EPAM
exempiifies this discrimination-based learning approach [Feigenbaum, 1963].

3. Formal grammars-In learning to recognize a particular (usually artificial) language,
formal grammars are induced from sequences of expressions in the language. These
grammars are typically represented as regular expressions, finite-state automata,
context-free grammar rules, or transformation rules.

4. Production rules-A production rule is a condition-action pair (C => A), where C is a
set of conditions and A is a sequence of actions. If all the conditions in a production rule
are satisfied, then the sequence of actions is executed. Due to their simplicity and ease
of interpretation, production rules are a widely-used knowledge representation in
learning systems. The four basic operations whereby production rules may be acquired
and refined are:

* Creation: A new rule is constructed by the system or acquired from an external
entity.

* Generalization: Conditions are dropped or made less restrictive, so that the rule
applies in a larger number of situations.

* Specialization: Additional conditions are added to the condition set, or existing
conditions made more restrictive, so that the rule applies to a smaller number of
specific situations.

* Composition: Two or more rules that were applied in sequence are composed into
a single larger rule, thus forming a "compiled" process and eliminating any
redundant conditions or actions.
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5 Formal logic-based expressions and related formalisms-These general-purpose
representations have been used to formulate descriptions of individual objects (that are
.nput to a learning system) and to formulate resultant concept descriptions (that are
cutput from a learning s'ystem). They take the form of formal logic expressions whose
components are propositions, arbitrary predicates, finite-valued variables, statements
restricting ranges of variacles (such as "a number between 1 and 9"). or embedded
logical expressions.

6. Graphs and Networks-In many domains graphs and networks provide a more
convenient and efficient representation than logical expressions. although the expressive
power of network representations is comoarable to that of formal logic expressions.
Some learning techniques exploit grapn-matching and graph.transformation schemes to
compare and index knowledge efficiently.

Frames and schemas-These provide larger organizational units than single logical
expressions or production rules. Frames and schemas can be viewed as collections of
laobeled entities ("slots"), each slot playing a certain prescribed role in the representation.
They have proven quite useful in many artificial intelligence applications. For instance, a
system that acquires generalized plans must be able to represent and manipulate such
plans as units, although their internal structure may be arbitrarily complex. Moreover, in
eperiential learning, past successes. untested alternatives, causes of failure, and other
information must be recorded and compared in inducirig and refining various rules of
behavior (or entire plans). Schema representations provide an appropriate formalism.

S. Computer programs and other procedural encodings.-The objective 9f seral
learning systems is to acquire an ability to carry out a specific process efficiently, rather
than to reason about the internal structure of the process. Most automatic programming
systems fall in this general category. In addition to computer programs, procedural
encodings include human motor skills (such as knowing how to ride a bicycle),
instruction sequences to robot manipulators, and other "compiled" human or machine
sills. Unlike logical descriptions, networks or frames, the detailed internal structure of
the resultant procedural encodings need not be comprehensible to humans. or to
automated reasoning systems. Only the external behavior of acquired procedural skills
become directly available to the reasoning system.

9. Taxonomies-Learning from observation may result in global structuring of domain
objects into a hierarchy or taxonomy. Clustering object descriptions into newly.proposed
categories and forming hierarchical classifications require that the system formulate
relevant criteria for classification.

10. Multiple representations-Some knowledge acquisition systems use several
representation schemes for the newly.acquired knowledge. Most notably, some
discovery and theory- formation systems acquire concepts. operations on those concepts,
and heuristic rules for new domains. These learning systems must select appropriate
combinations of representation schemes applicable to the different forms of knowledge
acquired.
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3.3. Classification by Domain of Application

Another useful dimension for classifying learning systems is their area of application. The list below

specifies application areas to which various existing learning systems have been applied. Application

areas are presented in alphabetical order, not reflecting the relative effort or significance of the

resultant machine learning system.

1. Agriculture

2. Chemistry

3. Cognitive Modeling (simulating human learning processes)

4. Computer Programming

5. Education

6. Expert Systems (high.performance, domain-specific Al programs)

7. Game Playing (chess, checkers, poker, and so on)

8. General Methods (no specific domain)

9. Image Recognition

10. Mathematics

11. Medical Diagnosis

12. Music

13. Natural Language Processing

14. Physical Object Characterizations

15. Physics

16. Planning and Problem-solving

17. Robotics

18. Sequence Extrapolation

19. Speech Recognition

Now that we have a basis for classifying and comparing learning systems, we turn to a brief

historical outline of machine learning.
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4. A Historical Sketch of Machine Learning
Over the years. research in machine learning has been pursued with varying degrees of intensity,

using different approaches and placing emphasis on different aspects and goals. Within the relatively

short history of this discipline, one may distinguish three major periods, each centered around a

different paradigm:

" neural modeling and decision-theoretic techniques

" symbolic concept-oriented learning

" knowledge-intensive a=proaches combining various learning strategies

4.1. The Neural Modelling Paradigm

The distinguishing feature of the first paradigm was the interest in building general purpose learning

systems that start with little or no initial structure or task-oriented knowledge. The major thrust of

research based on this tabula rasa approach involved constructing a variety of neural model-based

machines. with random or partially random initial structure. These systems were generally referred to

as neural nets or self-organizing systems. Learning in such systems consisted of incremental

changes in the probabilities that neuron-like elements (typically threshold logic units) would transmit

a signal.

Due to the primitive nature of computer technology at that time, most of the research under this

paradigm was either theoretical or involved the construction of special purpose experimental

hardwar, systems, such as perceptrons [Rosenblatt. 1958], pandemonium [Selfridge. 19591 and

adelaine [Widrow. 1962]. The groundwork for this paradigm was laid in the forties by Rashevsky and

his followers working in the area of mathematical biophysics [Rashevsky. 1948], and by McCulloch

and Pitts [1943]. who discovered the applicability of symbolic logic to modeling nervous system

activities. Among the large number of research efforts in this area. one may mention many works

such as (Ashby. 1960; Rosenblatt. 1958, 1962: Minsky & Papert. 1969: Block. 1961: Yovits, 1062:

Widrow. 1962: Culberson, 1963: Kazmierczak, 1963]. Related research involved the simulation of

evolutionary processes. that through random mutation and "natural" selection might create a system

capable of some intelligent behavior (for example, [Friedberg, 1958, 1959; Holland, 1980]).

Experience in the above areas spawned the new discipline of pattern recognition and led to the

development of a decision-theoretic approach to machine learning. In this approach, learning is

equated with the acquisition of linear, polynomial, or related discriminant functions from a given set of

training examples (for example, [Nilsson. 1965; Koford. 1966; Uhr, 1966; Highleyman. 1967] ). One of
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the best known successful learning systems utilizing such techniques (as well as some original new

ideas involving non-linear transformations) was Samuel's checkers program [Samuel, 1959, 1963].

Through repeated training, this program acquired master-level performance. Somewhat different, but

closely related, techniques utilized methods of statistical decision theory for learning pattern

recognition rules (for example, [Sebestyen, 1962; Fu, 1968; Watanabe, 1960; Arkadev, 1971;

Fukananga. 1972; Duda & Hart, 1973; Kanal, 19741).

In parallel to research on neural modeling and decision-theoretic techniques, researchers in control

theory developed adaptive control systems able to adjust automatically their parameters in order to

maintain stable performance in the presence of various disturbances (for example, [Truxal, 1955;

Davies, 1970; Mendel, 1970; Tsypkin, 1968, 1971, 1973; Fu, 1971, 1974]).

Practical results sought by the neural modeling and decision theoretic approaches met with limited

success. High expectations articulated in various early works were not realized, and research under

this paradigm began to decline.. Theoretical studies have revealed strong limitations of the

"knowledge-free" perceptron-type learning systems [Minsky & Papert, 1969).

4.2. The Symbolic Concept-Acquisition Paradigm

A second major paradigm started to emerge in the early sixties stemming from the work of

psychologists and early Al researchers on models of human learning [hunt el al., 1963, 1966]. The

paradigm utilized logic or graph structure representations rather than numerical or statistical

methods. Systems learned symbolic descriptions representing higher level knowledge and made

strong structural assumptions about the concepts to be acquired.

Examples of work in this paradigm include research on human concept acquisition (for example.

(Hunt & Hovland, 1963; Feigenbaum, 1963; Hunt et al., 1968; Hilgard, 1966: Simon & Lea, 19741). and

various, applied pattern recognition systems ([Bongard, 1970; Uhr, 1966; Karpinski & Michalski,

19661).

Some researchers constructed task-oriented specialized systems that would acquire knowledge in

tihe context of a practical problem. For instance, the META-DENDRAL program [Buchanan, 1978

generates rules explaining mass spectrometry data for use in the DENORAL System [Buchanan et a/.,

1971].

An influential development in this paradigm was Winston's structural learning system [Winston,

19751. In parallel with Winston's work, different approaches to learning structural concepts from
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ixamvles einerged. incuding a family of logic.Lased inductive learnng programs (AOVAL) "AlchaSKi.

19-2. 1973. 1978J. and related work by Haes Roh [1974J, Hayes-Roth & McDermott [1978], Vere

[1975], and Mitchell [19781. (See Dietterich and Michalski [1983] and Michie [I982] for additional

discussion of this paradigm.)

4.3. The Modern Knowledge-Intensive Paradigm

The third paradigm represents the most recent period of research starting in the mid-seventies.

Researchers have broadened their interest beyond learning isolated concepts from examples. and

i'ave begun investigating a .ide spectrum of learning methods. most based upon knowledge-rich

systems. Specifically. this paradigm can be characterized by several nev trends, including:

1. Knowledge-Intensive Approaches: Researchers are strongly emphasizing the use of
tasK-oriented knowledge and the constraints it provdes in guiding the learning process.
One lesson from the failures of earlier :avula rasa and knowledge-poor learning systems
is that to acquire new knowledge a system must already possess a great deal of initial
Knowledge.

2. Exploration of alternative methods of learning: In addition to the earlier research
emphasis on learning from examples, researchers are now investigating a wider variety of
learning methods such as learning from instruction (e.g.. [Mcstow. 1983 Haas & Hendrix,
1983; Rychener 1983]), learning by anaJogy (e.g.. [Winston. 1979: Carboneil. 1983:
Anderson. 1982]) and discovery of concepts and classifications (e.g., [Lenat. 1976;
Langley, et al, 1983: Michalski. 1983; Michalski & Stepp. 1983; Hayes-Roth, 1983:
Ouinfan, 19831).

3. Incorporating abilities to generate and select learning tasks: In contrast to
previous efforts, a number of current systems incorporate heuristics to control their focus
of attention by generating learning tasks, proposing experiments to gather training data,
and choosing concepts to acquire (e.g.. [Lenat. 1976: Mitchell. 1083: Carbonell. 1C83]).

In contrast with the knowledge-free parametric learning methods used in the neural networs. and

in contrast with the early symbolic methods that learned isolated. "disembodied" concepts, the

current approaches use a wealth of general and domain-specific knowledge. However. the availability

of large volumes of knowledge does not mean that the inductive inference processes are themselves

domain dependent and non-generalizable. The generality lies in the inductive inference methods and

the power is derived from their ability to use domain knowledge to focus attention and structure new

concepts. The current methodological assumption is that machine learning systems, much like

humans. must learn incrementally, slowly expanding a highly-organized knowledge base, rather than

by some gestalt self-organization process. The recently published book on machine learning

[Michalski, Carbonell & Mitchell, 1983] presents some of the major research directions in this general

approach.
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In Part II of this paper we will discuss current research approaches in greater depth, drawing from

current investigations, and we will suggest some future research directions that we believe hold

significant promise.
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